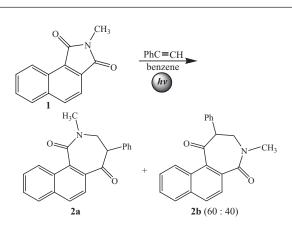
Unprecedented photoinduced insertion reactions of *N*-methyl-1,2-naphthalenedicarboximide with phenylacetylene Qingjian Liu

Department of Chemistry, Shandong Normal University, Jinan 250014, P. R. China

Irradiation of *N*-methyl-1,2-naphthalendicarboximide **1** together with phenylacetylene in benzene afforded unprecedented reductive insertion products dihydronaphthazepinediones **2a** and **2b**, which were characterised by NMR spectroscopy (¹H, ¹³C), IR spectroscopy, MS, elemental analysis and assignments confirmed by X-ray crystallographic analysis.

Keywords: photochemical reaction, N-methyl-1,2-naphthalenedicarboximide, phenylacetylene


The photochemistry of naphthalenedicarboximides with alkenes has been intensively investigated.¹⁻⁷ The main reaction mode in the photoinduced reactions of *N*-methyl-1,2-naphthalenedicarboximide **1** with alkenes is the insertion of the alkenes between the C(=O)–N bond of the imide moiety to give dihydronaphthazepinedione products.^{1,3}

In the studies of photochemistry of naphthalenedicarboximides with alkynes, it was found that the photoinduced cycloadditions of *N*-methyl-1,8-naphthalenedicarboximide with alkynes followed the pathway of *N*-methyl-1,8-naphthalenedicarboximide with alkenes.⁸ But that is not the case for **1**. Irradiation of **1** with phenylacetylene in benzene solution afforded unprecedented novel reductive insertion products, dihydronaphthazepinediones **2a** and **2b** (Scheme 1).

The structures of **2a** and **2b** were fully established by NMR (¹H, ¹³C), MS, IR spectroscopy and elemental analysis. 2-Methyl-4-phenyl-3,4-dihydro-1*H*-naphth[1,2-*c*]azepine-1,5(2*H*)-dione **2a**: colourless crystals from petroleum etherethyl acetate, m.p. 161–162°C; $\delta_{\rm H}$ (300 MHz) 8.50–8.47 (1H, d, *J* = 6.9 Hz), 8.02 (1H, d, *J* = 8.4 Hz), 7.95–7.92 (1H, dd, *J* = 9.6 and 4.0 Hz), 7.68–7.63 (2H, m), 7.42 (1H, d, *J* = 7.2 Hz), 7.31 (3H, m, br.), 7.10 (2H, s, br.), 4.42–4.33 (2H, m), 3.49 (1H, m), 3.39 (3H, s) ppm; $\delta_{\rm C}$ (75 MHz) 205.2, 167.4, 135.8, 133.8, 132.0, 131.9, 130.8, 129.7, 129.6, 128.7, 128.6, 128.5, 128.4, 128.3, 128.1, 123.9, 60.2, 52.8, 34.6 ppm; v_{max}: 1684 (imide), 1650 (imide), 1459, 1398, 1258, 775 cm⁻¹; *m/z* 315(M⁺, 6), 272(24), 211(39), 167(38), 126(47), 104(100). Found: C 80.25, H 5.3, N 4.6; Calcd. for C₂₁H₁₇NO₂: C 79.98, H 5.43, N 4.44.

4-Methyl-2-phenyl-3,4-dihydro-1*H*-naphth[2,1-*c*]azepine-1,5(2*H*)-dione **2b**: Colourless crystals from petroleum etherethyl acetate, m.p. 144–146°C. $\delta_{\rm H}$ (300 MHz) 8.08 (1H, d, J= 8.4 Hz), 7.93 (1H, d, J= 8.6 Hz), 7.90 (1H, d, J= 8.4 Hz), 7.58–7.53 (1H, m), 7.44–7.41 (2H, m), 7.31–7.25 (3H, m), 7.15–7.12 (2H, m), 4.47 (1 H, dd, J = 11.8 and 3.9), 4.31 (1H, dd, J = 14.6 and 11.8) and 3.60 (1 H, dd, J = 14.6 and 3.9), 3.28 (3H, s) ppm; $\delta_{\rm C}$ (75 MHz) 203.5, 169.3, 135.3, 135.1, 134.3, 132.7, 132.1, 131.3, 130.1, 129.6, 129.2, 128.7, 128.5, 128.2, 126.6, 125.6, 63.3, 52.5, 35.6 ppm; $v_{\rm max}$: 1694 (imide), 1645 (imide), 1482, 1397, 1253, 763 cm⁻¹; *m*/z 315(M⁺, 23), 272(38), 211(46), 167(42), 126(43), 104(100). Found: C 80.35, H 5.5, N 4.3; Calcd. for C₂₁H₁₇NO₂: C 79.98, H 5.43, N 4.44.

The structure of **2a** has also been determined and confirmed by single crystal X-ray crystallographic analysis (Fig. 1), which unambiguously differentiated the two regioisomers **2a** and **2b** which were incorrectly assigned before.³ Crystal data for **2a**: $C_{21}H_{17}NO_2$, M = 315.37, monoclinic, a = 37.890(8), b = 11.820(2), c = 15.020(3) Å, V = 6592(2) Å³, T = 293(2)K, space group C2/c, Z = 16, 5884 reflections measured, 5792

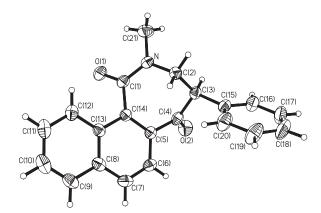
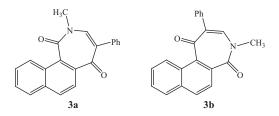



Fig. 1 The X-ray crystal structure ORTEP diagram of 2a.

unique ($R_{int} = 0.025$), which were used in all calculations. The final $wR(F_2)$ was 0.257 (all data).

It may be rationalised that **2a** and **2b** resulted from reduction of primary products **3a** and **3b** which were the insertion products of phenylacetylene between the C(=O)–N bond of the imide moiety. A similar observation has also been made for the photoinduced reaction of **1** with *t*-butylacetylene.⁹ Alibés *et al.*¹⁰ reported that the photocycloaddition of acetylene and furanones gave rise to cyclobutanes and not the expected cyclobutenes. The mechanisms of the C=C bond reduction in the naphthazepinediones need to be further investigated.

^{*} Correspondent. E-mail: liuqj@sdnu.edu.cn

Experimental

Melting points are uncorrected. ¹H NMR spectra were measured on a Bruker DPX 300 spectrometer at 300 MHz or 500 MHz with CDCl₃ as solvent. ¹³C NMR spectra were measured on a Bruker Avance 300 spectrometer at 100 MHz with CDCl₃ as solvent. IR spectra were recorded with a Shimadzu IR 440 spectrometer in KBr pellets. Mass spectra were taken on a VG ZAB-HS spectrometer in the electron impact ionisation mode. Elemental analyses were performed with a Perkin-Elmer 240 C analyser.

A solution of *N*-methyl-1, 2-naphthalenedicarboximide **1** (633 mg, 3.0 mmol) and phenylacetylene (2.04 g, 20 mmol) in benzene (100 ml) was irradiated with UV light of $\lambda > 330$ nm using a mediumpressure mercury lamp (500 W) for 12 h. After evaporation of the solvents under reduced pressure, the residue was subjected to flash chromatography on a silica gel (300–400 mesh) column to afford **2a** (458 mg, 57%) and **2b** (305 mg, 38%), and recovered **1** (95 mg, 85% conversion).

The author gratefully acknowledges Professor Jianhua Xu of Nanjing University for the guidance of this research and the National Natural Science Foundation of China (NSFC) for financial support.

Supporting Information (SI) available

¹H NMR spectra of compounds 2a and 2b are available from the author; CCDC 260171 for compound 2a contains

the supplementary crystallographic data for this paper. The data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request.cif.

Received 7 February 2007; accepted 9 July 2007 Paper 07/4464 doi: 10.3184/030823407X228795

References

- 1 Y. Kubo, S. Tojo, M. Suto, R. Toda and T. Araki, Chem. Lett., 1984, 2075.
- 2 Y. Kubo, M. Suto, S. Tojo and T. Araki, J. Chem. Soc. Perkin Trans. 1, 1986, 771.
- 3 Y. Kubo, R. Toda, K. Yamane and T. Araki, Bull. Chem. Soc. Jpn., 1986, 59, 191.
- 4 Y. Kubo, M. Suto, T. Araki, P.H. Mazzocchi, L. Klingler, D. Shook and C. Somich, *J. Org. Chem.*, 1986, **51**, 4404.
- 5 P.H. Mazzocchi, C. Somich and H. Ammon, *Tetrahedron Lett.*, 1984, **25**, 3551.
- 6 C. Somich, P.H. Mazzocchi and H.L. Ammon, J. Org. Chem., 1987, 52, 3614.
- 7 Y. Kubo, M. Mihara and T. Araki, Bull. Chem. Soc. Jpn., 1987, 60, 241.
- 8 Q.-J. Liu, Y.-M. Shen, H.-Y. An, G. Grampp, S. Landgraf, J.-H. Xu, *Tetrahedron*, 2006, **62**, 1131.
- 9 Q.J. Liu, PhD Dissertation, Nanjing University, Nanjing, 2004.
- 10 R. Alibés, P. de March, M. Figueredo, J. Font, X. Fu, M. Racamonde, Á. Álvarez-Larena and J.F. Piniella, J. Org. Chem., 2003, 68, 1283.